
50 The Delphi Magazine Issue 40

Knitting Your Own Threads
Presenting a better model for multithreaded applications
by Hallvard Vassbotn

var
IsMultiThread: Boolean;

type
TThreadFunc = function(Parameter: Pointer): Integer;

function BeginThread(SecurityAttributes: Pointer; StackSize: Integer;
ThreadFunc: TThreadFunc; Parameter: Pointer;
CreationFlags: Integer; var ThreadId: Integer): Integer;

procedure EndThread(ExitCode: Integer);

➤ Listing 1

All the Win32 platforms (Win95,
Win98 and WinNT) support

the concept of threading. This
allows you to split a process into
several independent execution
threads, each with its own local
stack and instruction pointer. This
is a powerful concept that can
improve the responsiveness of the
user-interface, run useful code
while waiting for I/O operations to
complete, and improve the overall
performance of your application
(in the case of WinNT running on a
multiprocessor machine).

Delphi has supported writing
multithreaded code ever since the
first 32-bit version, Delphi 2. There
have been some thread-related
articles in The Delphi Magazine
before. In his Under Construction
column in Issue 20 (April 1997),
Multi-Threading In Components,
Bob Swart gives a good introduc-
tion on multithreading in general
and how to use the TThread class. In
addition, back in Issue 17 (January
1997), Neil McClements showed us
how to do Multi-Threaded Database
Access With Delphi 2.0.

I will assume you already know
how multithreading works. In the
following sections, we will briefly
see how the multithreading sup-
port in Delphi is built up. Then we
will continue with how we can
build upon this foundation to
improve the usefulness of
multithreading in Delphi.

Threads In The Box
The Object Pascal Language itself
has support for threads with the
threadvar keyword. This can be

used to declare global variables
that will be unique for each thread
running in the process. Behind the
scenes this is implemented by
using one slot of the TLS (thread
local storage) facility of Win32.
This slot contains a pointer to a
record with all the threadvars in
the process. For details of the
implementation, look up TlsAlloc
in the Win32 help. In System (Delphi
2) or SysInit (Delphi 3 and 4) you
will find the following interfaced
declarations to aid in the threadvar
support:

var
TlsIndex: Integer;
TlsLast: Byte;

procedure _GetTls;

The first variable, TlsIndex, indi-
cates the index of the TLS slot that
the RTL is using for the process’
threadvar variables. TlsLast is a
magic variable that the linker sets
up so that its address contains the
combined size of all the threadvar
variables. This size is then used to
allocate a block of memory from
the local heap for each running
thread in the process.

The _GetTls procedure is a
magic routine that the compiler
calls whenever you reference a
threadvar variable. This routine
actually acts as a function and
returns the pointer to the local
heap block allocated for the cur-
rent thread. If you intend to access
threadvar variables from assembly
code, you should call the GetTLS
function explicitly. To get at a spe-
cific variable within the returned

record pointer, you simply use the
dot (.) qualifier. For instance, to
access the InOutRes threadvar from
assembly code, you can write:

CALL SysInit.@GetTLS
MOV EAX,[EAX].InOutRes

The value of the InOutRes variable
for the current thread will now be
in the EAX register. Note that this
code will work in Delphi 2 and 3,
but will not compile in Delphi 4,
because the variable has been
moved out of the interface part
and into the implementation part
of the System unit. Use the IOResult
function to access the contents of
the variable.

Threadvars are best used in
low-level and system-wide ser-
vices such as the InOutRes example
above. In fact, in all of the RTL only
two threadvars are used: RaiseList
and InOutRes. For instance, if you
have a library that returns error
codes through a single global vari-
able, you might have to convert it
into a threadvar to make the code
support multiple threads.

In most other situations, you can
safely forget about threadvars. It is
better to use the fields within a
TThread instance as the per-thread
working area.

The System Is Building Up
The next level of support for
threads can be found in the System
unit. All 32-bit versions of Delphi
(2, 3 and 4) have the Listing 1 code
declared.

This variable was added in
Delphi 4:

var
MainThreadID: LongWord;

IsMultiThread is a global variable
indicating if there is more than one
thread running in the process.
This is checked in all the routines
of the memory sub-allocator and

December 1998 The Delphi Magazine 51

ensures thread-safe operation
while keeping the overhead at a
minimum for single-threaded
applications.

The IsMultiThread flag is set to
True in a few places. BeginThread
sets IsMultiThread to True when it
creates a new thread in the applica-
tion. This routine is used internally
by the TThread class, so this covers
the cases when you call
BeginThread directly or use
TThreads. If you for some reason
need to call the Windows.Create
Thread API directly, you should set
IsMultiThread to True explicitly to
avoid re-entrancy problems in the
memory manager.

IsMultiThread was also set to
True in DelphiMM library in Delphi 2
and 3. There is no real need to do
this unconditionally, but I guess
Inprise (Borland at the time)
played it safe in case the DLL(s) or
application contained multiple
threads. In Delphi 4 this has
changed a bit. The DelphiMM library
is now only a stub that redirects all
calls to the BorlandMM.DLL. This
DLL is not provided with any
source code, so it is not known how
it is implemented with regard to
the IsMultiThread variable. The
new version of the ShareMem unit
now imports from the new
BorlandMM.DLL instead of the old
DelphiMM.DLL.

In Delphi4, COM support has
now also been made optionally
thread-safe. If you select that the
Apartment-Threaded or Multi-
Threaded model for your COM
objects, the ComObj unit will now
kindly set the IsMultiThread flag to
True for us.

In your own code, if you need to
conditionally support both single-
and multi-threaded operations,
you can check the IsMultiThread
variable. For instance, if you don’t
want to lock a resource if there is
only one thread running in the pro-
cess, but still want to make sure
the code is safe when it is called
from multiple threads, use the
code in Listing 2.

The BeginThread and EndThread
routines are thin wrappers around
the corresponding Win32 APIs
CreateThread and ExitThread. You
can look these up in the Win32 help

if IsMultiThread then EnterCriticalSection(MyLock);
try
// Access and update global resource here

finally
if IsMultiThread then LeaveCriticalSection(MyLock);

end;

➤ Listing 2

file for more detailed information.
BeginThread adds the convenience
of initialising the FPU and setting
up and removing a default excep-
tion handler for the thread.

BeginThread is called to create a
thread that runs a specific
procedure with the signature:

TThreadFunc = function(
Parameter: Pointer): Integer;

This can be handy when you want
to run a global routine in a thread.
However, it is generally cleaner
and more useful to use a TThread.

In Delphi 4 the MainThreadID
variable was added. This is initial-
ised by a call to the Win32 API
GetCurrentThreadID. This lets you
easily get at the threadID of the
main thread in the process. This
can be useful if you need to use a
Win32 API that requires a threadID,
for instance PostThreadMessage.

Let’s Get Classy
With the low level support of the
compiler and RTL out of the way,
let’s step up to the next level of
abstraction. The Classes unit
declares the TThread class, this is
the base class of all thread classes
in a process. It is basically a

unit Unit1;
interface
uses
Classes;

type
TMyThread = class(TThread)
private
protected
procedure Execute; override;

end;
implementation
{ Important: Methods and properties of objects in VCL can only be used in a
method called using Synchronize, for example, Synchronize(UpdateCaption);
and UpdateCaption could look like:
procedure TMyThread.UpdateCaption;
begin
Form1.Caption := 'Updated in a thread';

end; }
procedure TMyThread.Execute;
begin
{ Place thread code here }

end;
end.

➤ Listing 3

friendly wrapper around the
BeginThread routine and provides
simple-to-use properties and rou-
tines for setting the priority of the
thread, suspending and resuming
the thread, and so on. All the
details are in the help file.

TThread is an abstract class
because it does not define any
implementation for the protected
method called Execute. So you
create a new thread class that
descends from TThread and over-
ride the Execute method to do
whatever processing is needed.
For instance, running the New |
Thread Objectwizard generates the
code in Listing 3.

As you can see from the gener-
ated comments in this code, most
of the VCL is not thread-safe, so
you must use the Synchronize
mechanism to update the state of
components and so on. This forces
the method to run in the context of
the main thread. While the
synchronised code is run, the
worker thread is suspended. This
defies much of the reason to use
multiple threads in the first place
and this restriction is one of the
major drawbacks with the stan-
dard multithreading support in
Delphi.

52 The Delphi Magazine Issue 40

Another problem with this
model is that it breaks encapsula-
tion. The working thread has to
keep pointers to the form or com-
ponents that should be updated. In
addition, the idea of creating one
thread for each background task,
might not always be the best
solution.

The TThread class also defines a
WaitFor method. This can be called
by another thread, it will block
until the working thread is done. If
we call WaitFor on a thread from
the main thread, for instance, this
will freeze the user interface that is
controlled and painted by the main
thread. Again, this defies the
reason for writing multithreaded
code. Also, there is no direct sup-
port for waiting for more than one
thread at a time.

With all this said, TThread is still a
nice encapsulation of the thread
concept. We will later see how we
can work around most of these
restrictions and create a better
infrastructure for multithreaded
applications.

Add Some Sugar
When you create professional
multithreaded applications, you
will need support from some more
basic building blocks in addition to
the TThread class. For instance,
Classes defines the TThreadList,
which is a thread-safe version of
the well known TList workhorse. It
is basically just a wrapper around a
normal TList and an associated
Win32 API TRTLCriticalSection
that provides the locking
capability of the list.

The SyncObjs unit was intro-
duced in Delphi 3 and provides
thin wrappers around the useful
Win32 objects Events and
CriticalSections. In Delphi 4 they
added a class with the very exotic
name TMultiReadExclusiveWrite
Synchronizer to the SysUtils unit.
This class is very useful when you
have a large number of threads
that need to access a common
resource, and most threads need
read access. It allows any number
of threads simultaneous read
access, while locking out all other
threads when one thread needs
write access.

Nevertheless, there are still a lot
of things missing. There are no
object wrappers around sema-
phores or mutexes, no wrapping of
the WaitForMultipleObjects API, no
way to wait for signalled objects in
the main thread without blocking
the user interface. I could go on.
The point is that the
multithreading capabilities still
leave things to be desired. The
good news is that we can do
something about it.

Making A Better Mouse-Trap
I have extended the basic support
for synchronisation objects found
in SyncObjs. Take a look at the
HVSyncObjs unit provided on this
month’s disk. As well as the exist-
ing TEvent and TCriticalSection, I
have added TMutex, TSemaphore, and
a higher level object called
TWaitableThreadList.

All these classes descend from
TSyncroObject to allow for poly-
morphic calls to the Acquire and
Release methods. This allows us to
write code that will work equally
well with a low-overhead critical
section as with an inter-process
mutex object. The implementation
code does not have to change and
the decision of what class to use
could even be made at runtime.

All the waitable classes (all but
TCriticalSection) descend indi-
rectly from THandleObject. This
allows for polymorphic waiting for
these objects. They also descend
directly from TNamedObject. This
gives the classes a set of

constructors to create named and
anonymous objects as well as
open existing objects created in an
external process.

Finally, there is the
TWaitableThreadList class. This
descends from TSemaphore and
adds an encapsulation of a
thread-safe list. This implementa-
tion lets us wait until one or more
items have been added to the list
by a secondary thread. This lays
the ground for a thread-safe and
efficient communication mecha-
nism between threads.

The hierarchy of the classes in
the HVSyncObjs unit is in Figure 1.

The design of HVSyncObjs is
open-ended so you can easily add
more synchronisation classes to
your arsenal. For instance, I/O
Completion ports as supported by
Windows NT could be worthwhile
using for server-side applications
to reduce the number of threads
needed to service client requests.

The implementation of the
TCriticalSection, TMutex, TEvent
and TSemaphore classes is straight-
forward: thin wrappers around the
corresponding Win32 API routines
and structures. We can summarise
the typical uses of each of these
classes in Table 1.

If you need more detailed infor-
mation on how to use these
classes, look up the corresponding
Win32 API functions in the help.

Waiting For Godot
The most useful class in the
HVSyncObjs unit is without doubt

➤ Figure 1

December 1998 The Delphi Magazine 53

the TWaitableThreadList. This class
will be used as the basis for the
improved thread communication
mechanism we are going to need
later. The TWaitableThreadList
class only supports four opera-
tions besides creation and destruc-
tion, see Table 2.

So typically, one thread keeps
calling the Add method at random
intervals, while another thread
blocks on a call to WaitFor, wakes
up and then calls the Last method
to see what the other thread added
to the communication line. The list
has semantics like a FIFO (first in,
first out) queue.

This class can be used to admin-
ister a background working thread.
The thread class will keep two
TWaitableThreadLists, one InBox
for work to be done and one OutBox
for worked finished by the thread
ready to be picked up by the main
thread (or even another work
thread for further processing), see
example work flow in Figure 2.

So far, so good. Now we have a
reasonably clean and efficient way
of communicating between the

Class Description And Typical Uses

TCriticalSection Used to lock a common global resource (memory, file,
object etc). Cannot be used between two processes.

TMutex Used to lock a common global resource. Can be used
between two processes.

TEvent Signal the occurrence of some event to one or more
threads. Can be used between two processes.

TSemaphore Allows n-number of threads access to a resource. Can
also be used as a counting semaphore to keep track of
the number of items added to a list, for instance. Can
be used between two processes.

➤ Table 1

Operation Description

Add Add an item to the beginning of the list in a thread-safe
manner. This will also release the semaphore, signalling to
any other thread that might be waiting for this event.

WaitFor Wait for the semaphore object to become signalled. This will
happen when some other thread calls the Add method.

Last Retrieve the last item from the list. This should only be called
from a thread that received a signal from the list after a call
to WaitFor (or equivalents).

Count Query the number of items currently in the list.

➤ Table 2

main thread and a working thread.
This avoids using the problematic
Syncronize method of TThread.
However, we still have not solved
the issue of waiting for multiple
events from the main thread.

The MainThread Dilemma
The problem is that the main
thread needs to service any pend-
ing messages in its message queue
in addition to the events signalled
by our working thread. During
normal operation, when the appli-
cation goes idle and
there are no more
messages in the
message queue, the
main thread will
block with a call to
WaitMessage inside
TApplication.Idle.
As soon as a
message is added
to the queue, the
main thread will
wake up to handle
the message.

So how can
we change this

arrangement so that the main
thread will not only wake up on the
arrival of a message, but also on
the signalling of any number of
events or semaphores? It is not
recommended to modify the
source of TApplication inside the
Forms unit and this would not work
at all when using runtime packages
or for developers without the VCL
source code.

It turns out that we can solve
this problem by hooking into the
OnIdle event of TApplication.
Inside our OnIdle event handler,
we will call the powerful Win32 API
called MsgWaitForMultipleObjects.
This routine is able to block the
execution of the thread until a mes-
sage arrives at the message queue
or any of a number of objects
becomes signalled. This is just
what we need. If we wake up
because of a message, we immedi-
ately return to TApplication.Idle
to let it handle the message. Other-
wise, we handle the signal from the
object and loop around to call
MsgWaitForMultipleObjects again.

Yet Another Wrapper
Instead of calling MsgWait-
ForMultipleObjects directly, we
want to write another wrapper
class for it. This should gives us a
nicer interface and let us dynami-
cally add any number of threads,
handles or THandleObjects to be
waited for. In the HVSignalList
unit, you will find the implementa-
tion of the TSignalList class. The
two most important methods of
this class can be found in Table 3.

Main ThreadMain Thread
((withwith VCL)VCL)

WWorker Threadorker Thread
((Perform TPerform Tasksasks))

AddAdd ((TTaskask))

AddAdd((TTaskDoneaskDone))
WWaitForaitFor

TTaskask := Last:= Last

WWaitForaitFor
TTaskDoneaskDone := Last:= Last

InBoxInBox OutBoxOutBox

➤ Figure 2

54 The Delphi Magazine Issue 40

There are other methods and
properties to determine how the
SignalList should operate. For
instance, we can specify what kind
of messages should wake up the
thread (MsgWakeupMask), if mes-
sages should be ignored altogether
(IgnoreMessages), and if all objects
must be signalled simultaneously
for it to trigger (WaitForAll). See
the source code for details.

In Table 3, we say that the
AddSignal can be sent a TThread,
THandleObject or THandle. To
handle all cases in a generic
manner and to encapsulate these
different types of signalling
objects, I’ve created an abstract
class called TCustomSignal. This
class has three descendant classes,
TThreadSignal, TObjectSignal and
THandleSignal. The AddSignal
method takes a parameter of type
TCustomSignal, but at runtime one
of the three descendant classes
will actually be used.

After you have added a
TCustomSignal instance to the
SignalList, the list takes owner-
ship of the object. To add a
TWaitableThreadList to the signal
list we write code such as Listing 4.

Here we create the waitable list
and the signal list, then we connect
the InBox list to the SignalList by
wrapping it up in a TObjectSignal
and sending it off to the AddSignal
method.

Notice the second parameter of
the TObjectSignal.CreateInit con-
structor. It is a method pointer that
will be called when the InBoxobject
becomes signalled. This indicates
that some other thread has added
one or more items to our InBox and
we should perform some relevant
action (typically, we will call
InBox.Last to examine the item just
added).

Hooking OnIdle
Now that we have a nice encapsula-
tion of MsgWaitForMultipleObjects
to work with, let us continue
improving the threading support
of the main thread (and thus the
VCL).

As we discussed, this is
accomplished by hooking the
OnIdle event of TApplication. See
the source code of the

Method Description

AddSignal Add a signalling object to the list of items that should be
triggered on. This can be a TThread, a THandleObject or a
raw Win32 THandle.

WaitUntil Wait until one of the objects in the signal list triggers, until
there is a message in the message queue, or until a timeout
occurs.

➤ Table 3

var
InBox: TWaitableThreadList;
SignalList: TSignalList;

begin
InBox := TWaitableThreadList.CreateSimple;
SignalList := TSignalList.Create;
SignalList.AddSignal(TObjectSignal.CreateInit(InBox, Self.InBoxReady));
...

➤ Listing 4

TMultiThreadedMainLoop class in
the HVMultiThreadMain unit.

There are some implementation
details we must take care of. First,
we keep any old event already
assigned to the OnIdle property
before assigning it to our AppIdle
method. This is a good general rule
whenever you hook into an
external event property at
runtime, always keep the old value
and chain to it in your event
handler.

Then we have to tackle the issue
of multiple message loops within
the application. Remember that
our AppIdlewill only be called from
the main message loop within
TApplication. However, whenever
a menu or modal dialog is active,

other message loops are running
and we will never get control. This
will disable us from seeing any sig-
nalled objects until we get back to
the main message loop (when the
dialog or menu is dismissed).

To get around this problem, we
simply create a TTimer object and
program it to call our OnIdleTimer
event roughly 10 times per second.
You can fine-tune this resolution
by setting the IdleTimerInterval
property, but the default setting
will usually be appropriate. In the
OnIdleTimer we check that we
haven’t been idle for some time
and then empty any pending sig-
nalled objects in the signal list.

Now to the key method of the
TMultiThreadedMainLoop class, the

procedure TMultiThreadedMainLoop.AppIdle(Sender: TObject; var Done: boolean);
// Whenever the application becomes idle, i.e. there are no messages in the
// message queue, this procedure is entered.
begin
// The default case for the old idle event
// handler should be that it is done processing
Done := true;
// Call any old idle event handler
// - this could be extended with an idle hook chain
if Assigned(FOldAppIdle) then
FOldAppIdle(Sender, Done);

// WaitUntil handles all signalled objects for the main thread
if Done then
// If the old idle event handler is done,
// wait until there is a message for us (blocking)
FSignalList.WaitUntil(INFINITE, [wrMessage])

else
// If the old idle event handler is not done yet,
// just check for signalled objects or messages (non-blocking)
FSignalList.WaitUntil(0 , [wrMessage, wrTimeOut]);

// Always return Done=False to signal that the message
// loop should go back here when it has read all messages
Done := False;
// Tell the timer-event that we have actually been idle
FHasBeenIdle := true;
// Now return to the message loop in TApplication and
// let it have a look at the message for us

end;

➤ Listing 5

December 1998 The Delphi Magazine 55

OnIdleTimer event handler, see
Listing 5. Let’s study the implemen-
tation details of this essential
method in some detail.

First, we chain back to any old
idle event handler that has been
installed. If the old event handler
indicates that it is done processing
(or if there was no old idle event
handler), we call the WaitUntil
method of the signal list instance
with an INFINITE timeout parame-
ter and [wrMessage] as a wait return
mask. This call will not return until
there is a message in the message
queue of the main thread.

If there was an old idle handler
and it indicates that it is not done
processing, we call the WaitUntil
method with a 0 timeout parame-
ter. The call returns immediately
even if there is no message in the
message queue. This is to ensure
that the busy old idle handler will
be called again in due time.

Note that in both of the WaitUntil
calls, if any of the objects in the
signal list signals, it will be silently
handled and the correct call back
event will automatically be called.
This is handled deep down in the
implementation of the TSignalList
class by calling the Windows API
MsgWaitForMultipleObjects (see
the code on the disk for details).

After we return from the
WaitUntil method, we set a flag to
let the timer event handler know
that we have been idle. Then we
return to TApplication.Idle
indicating that we are not done
processing by setting the Done
parameter to False. If there was a

message in the message queue, it
will be picked up by the normal
message loop of TApplication.

The Delphi 4 Blues
It turns out that this logic works
beautifully in Delphi 2 and 3. It also
works in Delphi 4, but has a rather
disconcerting side-effect: the new
action list based functionality
ceases to work correctly. Spe-
cifically, the OnUpdate event of the
embedded TAction components no
longer fires. This causes any con-
trols linked to the actions to stop
updating their enabled state
properly, for instance.

The reason for this problem was
easy to find. The Idle method of
TApplication was changed in
Delphi 4 to accommodate the new
action lists and their automatic
ability to determine if command
controls (such as buttons and
menu items) should be updated.

These few lines from the
TApplication.Idle method in
Delphi 4 explains why this happens
(I have deleted code that does not
affect our case). The if statement
ending with the DoActionIdle call is
new for Delphi 4, see Listing 6

We are trapped in a Catch-22 sit-
uation here. Our OnIdle handler

procedure TApplication.Idle(const Msg: TMsg);
var Done: Boolean;
begin
...
Done := True;
if Assigned(FOnIdle) then
FOnIdle(Self, Done);

if Done and IsIdleMessage(Msg) then
DoActionIdle;

if Done then
WaitMessage;

end;

will always return with Done equal
to False. This is to ensure that the
blocking WaitMessage call inside
TApplication.Idle is never made.
The trouble is that this has the
side-effect of never calling the
DoActionIdle method. If we change
our code to return with Done set to
True, the action list functionality
should be back on its feet, but our
signalling objects will be left in the
dark until some message happens
to arrive in our message queue.

Saved By The Bell
When writing this article, I was just
about to end up in the trap of
trying to work around this prob-
lem by copying the logic of
DoActionIdle in my own code. This
would have worked, but it would
have been a very ugly, ver-
sion-specific and unmaintainable
solution. In fact, I had written the
code and several paragraphs
explaining it and its drawbacks,
when I suddenly realised that
there is a much simpler and more
elegant solution.

All along I have assumed that
Done must be False when we return
from our OnIdle handler. After all,
this is what you normally have to
do in OnIdle handlers to make cer-
tain we get control back immedi-
ately after handling any pending
messages. However, we are not
talking about your run-of-the-mill
OnIdle handler here. We are in the
special situation that we only
return to TApplication.Idle in the
event where we know that there is
at least one message pending in
the message queue (because
TSignalList.WaitUntil returned
wrMessage). We could also return
without any messages in the
message queue, but then the Done
parameter would have been set to
Trueby the old idle event handler.

➤ Figure 3: The sample multithreaded application.

➤ Listing 6

56 The Delphi Magazine Issue 40

With this knowledge, there is
actually no harm in returning with
Done equal to True. This will call
WaitMessage, but it will not block
because, there is always a message
waiting. So the solution is simply
to remove the Done := False
assignment from Listing 5.

Now, with that analysis behind
us, this simple change solves the
Delphi 4 problem quite elegantly.
The DoActionIdle will be correctly
called and the ActionLists should
again behave as expected. Further-
more, our code is now the same for
all versions of Delphi, and it should
be safe in the case of future
changes in the implementation of
TApplication.Idle (unless Inprise

starts using MsgWaitForMultiple-
Objects themselves...).

Demo Project
To demonstrate some of the new
units and classes we have been dis-
cussing, I have provided a simple
demo project on the disk. It plays
sounds through the PC speaker
(ancient technology, I know) in a
background thread. It could just as
well have performed lengthy calcu-
lations or searched through text
files. See Figure 3.

Conclusion
With this set of tools, you should
be much better equipped to write
multithreaded applications. Your

threaded code should be able to
support better encapsulation of
logic and let you isolate applica-
tion specifics and user interface
details from the working threads.
The signal lists should give you a
cleaner communication channel
between threads and the
multithreaded main loop class will
finally let you wait on multiple
objects while still handling the
message queue properly.

Hallvard Vassbotn is a Senior
Software Developer at Reuters
Norge AS, Falcon R&D. You can
reach him at hallvard@falcon.no

	Threads In The Box
	The System Is Building Up
	Let’s Get Classy
	Add Some Sugar
	Making A Better Mouse-Trap
	Waiting For Godot
	The MainThread Dilemma
	Yet Another Wrapper
	Hooking OnIdle
	The Delphi 4 Blues
	Saved By The Bell
	Demo Project
	Conclusion

